采用電化學氧化法去除低濃度氨氮污水,利用正交實驗的方法探究了 Ph、電流密度、氯離子添加量、電化學氧化時間、板類型對氨氮去除效果的影響。結(jié)果表明,水平組合為 pH=7,電解時間為 90min,氯離子濃度為 2000mg/L,電流密度 為 20mA/cm2,電板組合為銥鉭鈦板-316 不銹鋼。 氨氮是水體中的營養(yǎng)素,可導致水富營養(yǎng)化現(xiàn)象產(chǎn)生,是水體中的主要耗氧污染物,對水中生物及人類都有較大危害性。目前,國內(nèi)外氨氮廢水的處理方法主要有氣浮法、折點加氯法、電化學氧 化法、離子交換法、物理吸附法和生物脫氨法等。其中,電化學氧化 法由于具有占地面積少、操作簡單、綠色清潔等優(yōu)點而引起廣泛關 注。
原理介紹
電化學氧化過程按照作用機理的不同,可分為直 接電化學氧化和間接電化學氧化。終產(chǎn)物主要為氮氣,含少量NO2-,NO3-。
直接電化學氧化法
氨氮直接在陽表面失去電子被氧化去除。此過程中,氨氮先吸附在陽表面,后直接與陽之間發(fā)生三電子轉(zhuǎn)移反應。 如公式(1)所示。
氨氮發(fā)生直接電化學氧化必須滿足兩個必要條件:一是需要堿性介質(zhì)條件,以保證部分氨氮以游離態(tài) NH3 存在;二是合適的陽 電位。
氨氮被吸附態(tài)羥基自由基氧化去除
當使用電催化性能 較強的金屬氧化物陽時,吸附在電表面的水分子與陽氧化 物空穴反應生成吸附的羥基自由基(·OH),如公式(2)所示。氨氮被吸附的羥基自由基有效地氧化成氮氣和水,如公式(3)所示。
氨氮間接電化學氧化
該過程是通過陽反應先生成強 氧化劑,然后強氧化劑與氨氮反應,使氨氮降解脫除。氨氮的間接 電化學氧化,根據(jù)氯離子(Cl-)的存在狀況可分成有氯離子存在和無氯離子存在兩種形式。
廢水中存在氯離子時,氨氮的電化學氧化反應接近于 “折點加氯除氮”的反應過程。水中的氯離子先發(fā)生陽反應生成 活性氯(Cl2、HOCl、Cl O-等),其氧化電位見表 1,然后氧化性很強的活性氯再與氨氮反應,從而達到去除氮的目的,如圖 1 所示。
將氯氣或者次氯酸鈉通入污水中將其中的氨氮氧化成氮氣的 方法叫做折點氯化法。法氯氣在水中不僅會溶解還會發(fā)生反應,當 氯氣通入污水中達到一定劑量時水中游離氯的含量有一值, 此時能夠?qū)钡耆到?。當氯氣加入量超過該點時,水中游離氯 含量增大而對去除效果沒有改變,這個能達到去除效果而又不造成氯氣浪費的劑量點就是折點。
依據(jù)“折點氯化”反應機理,活性氯與氨氮的具體反應如下列公式。
此外,活性氯與氨氮的反應過程中也會有一些副反應的發(fā)生, 如析氧反應、析氫反應以及消耗活性氯的反應等,如下列公式。
氨氮廢水不含氯離子時,氨氮主要是被電化學反應過程中產(chǎn)生的羥基自由基氧化而去除。羥基自由基可以由水或OH(- 堿 性條件下)在陽氧化產(chǎn)生,其電反應如下:
羥基自由基一種很強的氧化劑,其氧化電電位高達 2.8V(vs.SHE),分別比 H2O2的 1.76 V 和 O3的 2.07 V 高 59%和 35%,也比 其它一些常用的強氧化劑如 KMnO4、Cl2 和 Cl O2 的氧化電電位高。同時,羥基自由基的電子親和能力為 569.3KJ,具有很高的電負性或親電性,能夠?qū)Π钡M行有效的氧化。氨氮可以被羥基自由基氧化為氮氣和水。
實驗裝置
本次實驗的主要儀器裝置一覽表見 2。
實驗方法
實驗原水采用模擬氨氮污水,每次實驗用水量為1L,采用硫酸銨配制模擬氨氮污染液,濃度為為 8mg/L(以 NH4計)。氨氮的測定采用《水質(zhì)氨氮的測定納氏試劑分光光度法(HJ535—2009)》,pH 的測定使用酸度計。
根據(jù)正交實驗表 3 進行各組實驗。
板類型對應的板材料見表 4。
實驗步驟
以 1 號實驗為例。a.用硫酸銨配制 8mg/L 的模擬氨氮污水,倒入電解槽中)。b.添加 0.825g 氯化鈉(500mg/L Cl-),調(diào)節(jié)pH=5。c.安裝電板至電解槽兩側(cè),連接電線至直流穩(wěn)壓電源。d.設置穩(wěn)壓直流電源的電流為 0.5A,打開電源并記錄開始時間點解時 間為 15min。e.電解結(jié)束后,測試水樣的 pH,并取樣測試氨氮含量,記錄結(jié)果。f.調(diào)整參數(shù),重復 a-e,進行下一組實驗。
實驗結(jié)果與討論
試探性實驗結(jié)果及分析
氯離子濃度和氨氮去除的關系。在 做正交實驗之前,對氯離子的添加量做了一組試探性實驗。實驗結(jié) 果如見表 5。初始氨氮濃度 8.96 mg/L,電流密度 5mA/cm2,板間距10cm,電解時間 30min,pH=5.68。
實驗表明,氯離子含量對氨氮的去除具有重要的意義。氯離子 濃度<400mg/L 時,氨氮含量不降反增,其原因初步分析如下: 氯離子含量過低,電解液中主要反應為式(15),次要反應為 (16)和(17)。
此時,大量水被電解,僅有少部分氯氣生成,用以氧化氨氮。 也就是說,電解水的量大于氨氮的處理量,造成了氨氮被“濃縮”,含 量不降反增。當氯離子濃度達到一定值以后,主要反應為(16)和 (17),此時有足夠的氯氣溶解于水氧化氨氮。從這點來說,氯離子濃 度越高,處理效果越好。但氯離子濃度過高,則會導致電流效率低 下、能源浪費的問題,甚至會有氯氣逸出,造成隱患。因此,應當 合理控制氯離子濃度,原則是在保障氨氮去除效果的同時,盡量降低氯離子濃度。
正交試驗結(jié)果及分析
正交試驗的結(jié)果采用方差分析法,分 析結(jié)果見表 6。從正交實驗的差分析中我們可以確定各因子對氨氮去除效果的主次順序為:時間、氯離子濃度、pH、電流密度、板 類型。水平組合為 pH=7,電解時間為 90min,氯離子濃度為2000mg/L,電流密度為 20mA/cm2,電板組合為銥鉭鈦板-316 不銹鋼。同時根據(jù)分析結(jié)果可以得出,電解時間越長、氯離子濃度越 高、電流密度越大,處理的效果越好。但是也應該注意,電解時間過 長和電流密度過高,會造成電流效率低下、能耗高的問題;氯離子 濃度過高有可能會使過量的氯氣逸出,造成隱患。
注:《水質(zhì)氨氮的測定納氏試劑分光光度法(HJ 535—2009)》中氨氮檢測下限為0.1mg/L,此處濃度為低于檢測下限。根據(jù)正交實驗的結(jié)果,可以確定在一定的工藝條件下,能夠?qū)⒊鏊钡繙p少至 0.2mg/L 及其以下。陽材料需要選用貴重金 屬涂層鈦電,陰可以選用防腐蝕性能較好的 316 不銹鋼板。
本文連接: http:///newss-462.html
|